National Repository of Grey Literature 2 records found  Search took 0.01 seconds. 
The development of multimaterial 3D printing of metal parts by SLM technology
Pliska, Jan ; Dočekalová, Kateřina (referee) ; Koutný, Daniel (advisor)
This thesis deals with research and optimization of process parameters and methodology of production of multimaterial parts manufactured by SLM. This work investigates iron-based and copper-based materials. The aim of the work is to create a good-quality horizontal and vertical multimaterial interface. In the case of the horizontal interface, the optimal process parameters for the processing of selected materials, their subsequent optimization for a goodquality horizontal interface and verification of mechanical properties were experimentally determined. For the vertical interface, it was necessary to design a production methodology and further optimize the process parameters. Finally, some mechanical properties of the interface were determined. However, research of the vertical interface has been a scientific task with some degree of uncertainty, and as this area has not yet been fully explored, it has proved to be a more complex problem than previously thought. It was therefore not possible to completely clarify it in the given time and with the available means. This work provides a detailed description of the mechanisms of creating both types of interfaces and their properties and can serve as a basis for further study of multimaterial 3D printing of metals based on iron and copper.
The development of multimaterial 3D printing of metal parts by SLM technology
Pliska, Jan ; Dočekalová, Kateřina (referee) ; Koutný, Daniel (advisor)
This thesis deals with research and optimization of process parameters and methodology of production of multimaterial parts manufactured by SLM. This work investigates iron-based and copper-based materials. The aim of the work is to create a good-quality horizontal and vertical multimaterial interface. In the case of the horizontal interface, the optimal process parameters for the processing of selected materials, their subsequent optimization for a goodquality horizontal interface and verification of mechanical properties were experimentally determined. For the vertical interface, it was necessary to design a production methodology and further optimize the process parameters. Finally, some mechanical properties of the interface were determined. However, research of the vertical interface has been a scientific task with some degree of uncertainty, and as this area has not yet been fully explored, it has proved to be a more complex problem than previously thought. It was therefore not possible to completely clarify it in the given time and with the available means. This work provides a detailed description of the mechanisms of creating both types of interfaces and their properties and can serve as a basis for further study of multimaterial 3D printing of metals based on iron and copper.

Interested in being notified about new results for this query?
Subscribe to the RSS feed.